Anharmonicity-Induced Solitons in One-Dimensional Periodic Lattices

Jacob Szeftel,†2 Pascal Laurent-Gengoux,3 and Ernest Ilisca†

1Laboratoire de Physique Théorique de la Matière Condensée, case 7020, 2 Place Jussieu, 75251 Paris Cedex 05, France
2Laboratoire Léon Brillouin (CEA-CNRS), Centre d’Etudes de Saclay, 91191 Gif-sur-Yvette Cédex, France
3Ecole Centrale, Grande Voie des vignes, 92295 Chatenay-Malabry, France

(Received 2 April 1999)

All bell- and kink-shaped solitons sustained by an infinite periodic atomic chain of arbitrary anharmonicity are worked out by solving a second-order, nonlinear differential equation involving advanced and retarded terms. The asymptotic time decay behaves exponentially or as a power law according to whether the potential has a harmonic limit or not. Excellent agreement is achieved with Toda’s model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Lattice and continuum solitons differ markedly from one another.

PACS numbers: 05.45.Yv, 05.50.+q, 63.20.Ry

The atomic motion in an anharmonic crystal is described [1] in terms of generic modes comprising localized vibrations such as breathers and standing waves, vibrational traveling waves, and solitons. The interest for solitons was kindled in the last century by the observation of nonoscillatory waves moving in a continuum at constant velocity while preserving a time-independent pattern [2] which is usually either bell or kink shaped. They show up as integrable solutions of a nonlinear partial differential equation [3]. Since then solitons have been investigated in a miscellany of frameworks pertaining to field theory [4] or solid state physics [2,5] such as hydrodynamics, optical fibers, or Josephson junctions. Recently solitons have been recognized to be of significance in atomic lattices too [6], as regards magnetic materials [7], spin-Peierls, or charge-density wave compounds [5]. The task of finding solitons in discrete matter is more difficult [8–10] than in a continuum because a nonlinear differential equation, including retarded and advanced terms, must be coped with, which is an unsolved problem so far. All previous attempts [11] have consisted of moving breathers or static solitons over the Peierls-Nabarro barrier. As the resulting solutions either got deformed and damped by radiating phonons or displayed undamped oscillations called nanopterons [1,2,11], no conclusive statement could even be made upon the existence of solitons in anharmonic crystals, except for two particular models, the moving breather [12] and Toda’s potential [13].

This work is concerned with working out for the first time all classical solitons of an anharmonic, infinite, and periodic atomic chain. Solitons are shown to exist in discrete lattices by taking advantage of the infinite chain being integrable for solitons, as already done for breathers [14]. The procedure will be exemplified for bell-shaped solitons as well as kink-shaped ones in the Toda, Fermi-Pasta-Ulam (FPU), and sine-Gordon models.

Integrability.—Let us consider an infinite chain of oscillators coupled by a pair potential $V = \sum_{i} W(u_{i}, u_{i+1})$ where u_{i} designates the displacement coordinate of the lattice site i. $W(u_{i}, u_{i+1})$ is assumed to be an arbitrary anharmonic function. The equations of motion read at time t

$$\ddot{u}_{i}(t) = -\partial V / \partial u_{i} = f(u_{i-1}, u_{i}, u_{i+1}).$$

(1)

$f(u_{i-1}, u_{i}, u_{i+1})$ is assumed to have one equilibrium position at $u_{i} = 0$, $\forall i$ for bell-shaped solitons, and two equilibrium positions at $u_{i} = 0$ and $u_{i} = a$, $\forall i$ for kink-shaped solitons, so that $f(0, 0, 0) = f(a, a, a) = 0$. A soliton, propagating at constant velocity $v = 0 > 0$ while preserving its shape, is characterized by $u_{i+1}(t) = u_{i}(t \mp 0)$, $\forall i, t$ (the lattice parameter is thus set equal to 1). Equation (1) is recast into

$$\ddot{u}(t) = f(u(t - \tau), u(t), u(t + \tau)).$$

(2)

Bell- and kink-shaped solitons are characterized, respectively, by $u \to 0$ for $|t| \to \infty$ and both $u \to 0$ for $t \to -\infty$, $u \to a$ for $t \to \infty$. Besides it is required that $\dot{u}(t)$ vanish a single time at $t = 0$ for a bell-shaped soliton, whereas $\dot{u}(t)$ keeps always the same sign and $\dot{u}(0) = 0$ for a kink-shaped soliton, a is realized to stand for the displacement amplitude of a kink-shaped soliton, whereas $a = u(0)$ will refer hereafter to that of a bell-shaped soliton. Thus Eq. (2) turns out to be a nonlinear differential equation having the function $f(u(t))$ as the single unknown and including advanced $[u(t + \tau)]$ and retarded $[u(t - \tau)]$ terms. For convenience the way to solve Eq. (2) will be presented for bell-shaped solitons.

As t does not come out explicitly in Eqs. (1) and (2), a solution $u(t)$ such that $u(-t) = u(t)$, $\forall t$ is looked for. This requires $W(u_{i}, u_{i+1})$ to be symmetric with respect to u_{i}, u_{i+1} and hence $f(u_{i-1}, u_{i}, u_{i+1})$ to be symmetric with respect to u_{i-1}, u_{i+1}. As a matter of fact, after replacing t by $-t$ in Eq. (2), it becomes $\dot{u}(t) = \dot{u}(-t)$, which is consistent with $u(-t) = u(t)$. Thus it suffices to consider the range $t \leq 0$ only. Because of $\dot{u}(t < 0) \neq 0$, $u(t)$ is monotonous versus t. Hence $u(t)$ can be inverted to give $u(t)$: This ensures the existence of the one to one mapping $u(t) \to t \to u(t + \tau)$ for $t \leq -\tau$, which

3982 0031-9007/99/83(20)/3982(4)$15.00 © 1999 The American Physical Society
defines the function g, referred to below as the time-shift operator, so that $u(t + \tau) = g(u(t))$ and $u(t - \tau) = g^{-1}(u(t))$. Because of $u \to 0$ for $t \to -\infty$, it entails that $g(0) = g^{-1}(0) = 0$. Equation (2) is then rewritten as

$$
\dot{u}(t) = h(u), \quad h(u) = f(g^{-1}(u), u, g(u)). \tag{3}
$$

If $g(u)$ is supposed to be known, Eq. (3) shows up an ordinary differential equation, similar to that encountered for the continuum soliton [2]. Accordingly, it is integrated thanks to the kinetic energy theorem, while taking into account $\dot{u} = 0$ for $u = 0$, to yield

$$
\dot{u}(t) = \sqrt{e(u(t))}, \quad e(u) = 2 \int_0^u h(y) \, dy. \tag{4}
$$

As for continuum solitons, Eq. (4) requires $uh(u) > 0$ for $u \to 0$; that is, there is no restoring force in the neighborhood of $u = 0$. This unstable equilibrium position is the soliton signature. In case of a harmonic potential this would cause $|u(t)| \to \infty$ for $t \to \infty$. Thus an anharmonic potential is a prerequisite for $u(t)$ to remain finite. A similar statement has already been made regarding equilibrium with respect to breathers [14]; that is, anharmonicity can restore dynamical stability in a lattice unstable in the harmonic limit.

Equation (4) entails also that the infinite system of Eq. (1) is integrable in so far as the energy $e = \dot{u}_i^2/2 - \int_0^{u_i} h(y) \, dy$ associated with each degree of freedom u_i is conserved (and equal to 0) for every site i. Notice that this prominent property could be born out by introducing the time-shift operator $g(u)$. It follows from Eq. (4) and $\dot{u} = 0$ for $u = a$ that $e(u) = 2 \int_a^u h(y) \, dy$. Further integration leads to

$$
t = \int_a^u dx/\sqrt{e(x)}. \tag{5}
$$

Because $t(u)$ is obtained by two quadratures, as would be the case for a single oscillator, Eq. (2) is said to be integrable for solitons. Applying Eq. (5) to τ gives

$$
\tau = \int_{u(t)}^{u(t+\tau)} dx/\sqrt{e(x)}. \tag{6}
$$

By differentiating Eq. (6) with respect to $u(t)$, it becomes

$$
dg / du = \sqrt{\left[e(g(u))/e(u)\right]}, \tag{7}
$$

where $u(t + \tau) = g(u(t))$.

Asymptotic behavior.—Taking the leading power of the Taylor expansion of $h(u)$ in Eq. (3) at the equilibrium position $u = 0$ to be proportional to u^l gives rise to $dg / du = \sqrt{\left[g(u)/u^{\alpha}\right]}$. Replacing $g(u)$ by ru^α near $u = 0$ leads to $\alpha = 1$, $r = r(l+1)/2$, whence $l = 1$ or $r = \frac{dg}{du}(u = 0) = 1$ are inferred to be the only possible assignments. If $l = 1$ and $r \neq 1$ are assumed [$l = 1$ and $r = 1$ give rise to $u(t) = 0$, $\forall \, t$], $h(u)$ shows up a linear function of u, which entails that the potential $W(u_i, u_{i+1})$ is quadratic with respect to u_i, u_{i+1}, or equivalently has a harmonic limit. Therefore two kinds of bell- and kink-shaped solutions have been found according to whether the potential $W(u_i, u_{i+1})$ has a harmonic limit or not. They will be denoted A and B and correspond to $r \neq 1$ or $r = 1$. They differ markedly by the respective asymptotic $|t| \to \infty$ behaviors of $u(t)$.

In case of a potential having a harmonic limit ($l = 1, r \neq 1$), Eq. (2) reads near $u = 0$ for a soliton A,

$$
\dot{u} = \gamma u,
$$

$$
\gamma = r^{-1} \partial f / \partial u_{i-1} + \partial f / \partial u_i + r \partial f / \partial u_{i+1}, \tag{8}
$$

where the partial derivatives of f are all calculated for $u_{i-1} = u_i = u_{i+1} = 0$. In order to get $u(t) \to 0$ for $t \to -\infty$, $\gamma > 0$ is needed, whence it ensues that $u \propto e^{\gamma t}$ and $T^{-2} = \gamma$. Furthermore, the asymptotic $t \to -\infty$ exponential behavior entails that $r = e^{\gamma t}$. Replacing r by this expression in γ in Eq. (8) gives rise to what will be referred to below as the dispersion relation of solitons A by analogy with that of traveling phonons.

Contradistinctly in case of a potential having no harmonic limit, consistency of Eq. (7) with $l > 1$ requires that $r = 1$. Therefore the associated soliton B displays an asymptotic behavior for $u(t)$ which is no longer exponential but rather power-law-like, namely, $u(|t|) \propto 1/|t|^{l/(l-1)}$ for $|t| \to \infty$.

All displacement patterns of bell- and kink-shaped solitons A, B, presented below, have been reckoned by solving Eq. (2) rather than Eq. (7). They depend on a single parameter, chosen here to be τ. As the shooting method used for breathers [14] must be discarded because of the peculiarity of Eq. (2), a scheme combining the finite element and Newton’s methods has been applied to the calculation of solitons A and B and will be detailed elsewhere. It is noteworthy that the time-shift operator $g(u)$, by affording explicitly the $|t| \to \infty$ behavior of $u(t)$, has enabled us to deal with the case of the infinite crystal, which was beyond the scope of previous work.

Bell-shaped solitons.—The pair potential $W(u_i, u_{i+1}) = (u_i - u_{i+1})^2 - u_i^2 u_{i+1} + u_i^3 u_{i+1}^3 / 3$, having a harmonic limit, has been studied for solitons A. The dispersion relation reads in this case

$$
2T^2[\cosh(\tau/T) - 1] = 1, \tag{9}
$$

which implies together with $r = e^{\gamma t} > 1$ that the velocity $\tau^{-1} > 1$. The amplitude $a = u(0)$ versus velocity τ^{-1} is plotted in Fig. 1. No solution was found for $\tau^{-1} < 1.06$. It is interesting to compare with the continuum soliton. The equation of motion is worked out in this latter case by replacing [2] in Eq. (1) $u_{i+1} - u_i$ by $b \partial u / \partial x$, where b stands for the lattice parameter and x is the abscissa, and taking the limit for $b \to 0$. It then becomes $\partial^2 u / \partial t^2 - \partial^2 u / \partial x^2 = u^2 - u^3$. The displacement $u(x, t)$ depends on t and x. Not only does a increase with τ^{-1} for the lattice soliton while $a = 4/3$ shows up τ independent for the continuum one, but the $|t| \to \infty$ behavior as $u(x, t) \propto (x - t/\tau)^{-2}$ differs qualitatively from
the exponential one typical of the lattice soliton A, as seen in Fig. 2.

The potential $W_2(u_i, u_{i+1}) = -\frac{(u_i - u_{i+1})^2}{2} + \frac{u_i^4 + u_{i+1}^4}{5}$, having no harmonic limit, has been investigated for bell-shaped solitons B [see the displacement patterns $u(t)$ in Fig. 2]. Accordingly, $u(|t| \to \infty)$ decays like $1/|t|$ and besides does not depend on τ. The amplitude has been plotted versus velocity in Fig. 1. Notice that there are solutions for $\tau^{-1} < 1$ by contrast with W_1.

Toda’s soliton.—The pair potential [13] reads $W_3(u_i, u_{i+1}) = e^{u_i^4 - u_{i+1}^4}$ and sustains a kink-shaped soliton A having $\ddot{u}(t) < 0$, the dispersion relation of which is given by Eq. (9). The equation of motion reads

$$\ddot{u}(t) = e^{u(t-\tau)-u(t)} - e^{u(t)-u(t+\tau)}.$$

As a consequence of $W_3(u_i, u_{i+1})$ depending on u_i, u_{i+1} via their difference only, there are infinitely many equilibrium positions. Recalling that $\ddot{u}(t = 0) = 0$, the solution is sought to have the property that $u(\tau) + u(t) = 2u(0)$, consistent with Eq. (10). However, $W_3(u_i, u_{i+1})$ itself has no particular symmetry with respect to u_i, u_{i+1}. The sequence of iterations of Newton’s method converges still faster than for the bell-shaped soliton and the agreement with Toda’s results is gratifying; in particular, the relation $|\alpha| = \tau/T$, valid for Toda’s soliton, is checked accurately. No solitonlike solution having $\ddot{u}(t) > 0$ has been found for Eq. (10). This seems to confirm that the only soliton sustained by the potential W_3 is that discovered by Toda.

FPU soliton.— The FPU potential has been studied extensively [10]. The version of concern here reads $W_4(u_i, u_{i+1}) = \frac{(u_i - u_{i+1})^2}{2} + \frac{(u_i - u_{i+1})^4}{4}$. Our interest in the FPU potential stems from the property that its harmonic limit has a branch of acoustical phonons unlike most of the potentials used by other authors [1] which involve a local contribution ruling out any acoustical phonon. Thus W_4 can describe the bulk atomic motion of a realistic, one-dimensional anharmonic solid. The dispersion relation is again given by Eq. (9). As $W_4(u_i, u_{i+1})$ depends on u_i, u_{i+1} through their difference only like W_3, the kink-shaped soliton A sustained by W_4 has the same properties as already discussed for Toda’s soliton. However, it displays an additional property because $W_4(u_i, u_{i+1})$ is even with respect to u_i, u_{i+1}; namely, if there is a solution $u(t)$ there is necessarily a solution $2u(0) - u(t)$. The amplitude $a(\tau^{-1})$ is pictured in Fig. 1. It increases with the velocity but unlike Toda’s soliton for which $a(\tau^{-1} = 1) = 0$, there comes out $a(1) \neq 0$. Displacement patterns $u(t)$ are represented in Fig. 3.

The potential $W_4(u_i, u_{i+1}) = \frac{(u_i^2 - u_{i+1})^2}{4}$ has been studied for solitons B. It could mimic a solid driven out of equilibrium by a soft phonon. Although $g(u)$ is generally not analytic at $u = 0$ for every FPU potential having no harmonic limit, soliton existence has been established [15]. Besides, the asymptotic decay of $u(|t| \to \infty)$ can be shown to be neither exponential nor power-law-like. The corresponding $u(t)$’s are pictured in Fig. 3, whereas the

![FIG. 1. Plots of $a(\tau^{-1})$ for solitons sustained by the potentials W_1 (filled diamonds), W_2 (filled squares), W_4 (filled circles), and W_5 (filled triangles).](image1)

![FIG. 2. Plots of $u(t)$ for continuum (solid and dashed lines) and lattice bell-shaped solitons sustained by W_1 (dotted line and +) and W_2 (filled circles and triangles); respective velocities τ^{-1} are indicated in the figure.](image2)
amplitude is plotted in Fig. 1. As is the case for a soliton
B, there are solutions for \(\tau^{-1} < 1 \).

Sine-Gordon soliton.—The pair potential has been
taken as \(W_6(u_i, u_{i+1}) = \frac{(u_{i+1} - u_i)^2 + \cos(u_i) + \cos(u_{i+1})}{2} \), because
no soliton has been found for the usual sine-Gordon
potential \([2, 10, 11]\) written with \(-\cos(u_i) \) instead of
\(+\cos(u_i) \). Although the configuration \(u_i = 0, \forall i \) of \(W_6 \)
is unstable, dynamical equilibrium could still be achieved
owing to anharmonicity \([14]\). Since \(W_6(u_i, u_{i+1}) \) like
\(W_4, W_5 \) is even with respect to \(u_i, u_{i+1} \), \(u(t) \) and
\(2u(0) - u(t) \) are simultaneously solutions. But the
term \(\cos(u_i) \) imposes \(|u| = 2\pi \) so that the amplitude
is independent of \(\tau \). Note that \(W_4, W_5, W_6 \) might as well
sustain a bell-shaped soliton since they are symmetric
with respect to \(u_i, u_{i+1} \). Actually the restoring force
proves too weak to allow for such a solution. The
comparison with the soliton originating from the sine-Gordon
equation \([2]\) \(\bar{\beta}^2 u/\bar{t}^2 - \bar{\beta}^2 u/\bar{x}^2 = \sin(u) \) is all the more
interesting since the continuum soliton displays also an
asymptotic exponential behavior and has the same amplitud
of \(2\pi \). However, the respective dispersion relations
\(T^2 [2 \cosh(\tau/T) - 1] = 1 \) for the lattice soliton \(A \)
and \(\tau^{-2} - T^{-2} = 1 \) for the continuum one are quite different.
Accordingly, the respective dispersion patterns \(u(t) \)
differ from one another as shown in Fig. 3.

In summary, even though the continuum soliton happens
to present an exponential \(|t| \rightarrow \infty \) behavior, the
respective properties as regards the dispersion relation or
the \(a(\tau^{-1}) \) dependence are quite different. Therefore previous attempts to obtain the lattice soliton by continuous
extrapolation from the continuum one might be misleading \([2, 9-11]\).

The existence of bell- and kink-shaped solitons moving
at constant velocity while preserving a permanent shape
has been demonstrated in one-dimensional, anharmonic
crystals. This result could be achieved by showing first
that the lattice equation of motion is integrable for soli-
tons. Two classes of solutions, \(A \) and \(B \), have been found
dependent on the potential having a harmonic limit. In
case the potential has a harmonic limit (soliton \(A \), the
asymptotic behavior is exponential and there is a disper-
sion relation between the decay time \(T \) and the propaga-

FIG. 3. Plots of \(u(t) \) for lattice solitons sustained by \(W_4 \) (solid
and dashed lines), \(W_5 \) (filled triangles and circles) and the
lattice (filled squares and \(\times \)) and continuum (filled diamonds
and dotted line) sine-Gordon potentials; respective \(\tau^{-1}, T \)'s are
indicated in the figure.

York, 1996).
Berlin, 1980).
[4] R. Rajaraman, Solitons and Instantons (North-Holland,
Amsterdam, 1982).
1011 (1976).
161, 391 (1994).